Research

Math meets medicine

We believe our research can help bring affordable world-class medical expertise to every patient around the world.

Under the microscope

Hear how we approach AI as augmentation—not a replacement—and why transparency, safety, and trust are core to everything we build.

Core research

Model reasoning

General purpose LLMs are powerful at solving math exams but fail when they are tasked with complicated real-world healthcare reasoning.
Learning to reason from a complex healthcare history, the most recent medical research, and laboratory results takes a specialized reasoning agent with embedded knowledge of millions of related healthcare cases.

Policy optimization

Policies define the protocol followed by a machine learning model. Policies are learned from human guidance and general purpose LLM policies are defined by non-healthcare-trained individuals.
Optimizing policies through feedback from healthcare professionals enable learning the protocol from the best in class.

Alignment and interoperability

AI systems are inherently bad at knowing when they don’t know. Building interpretability into the AI allows healthcare professionals to understand the reasoning process and locate the source of its output.
Alignment AI models are tasked with interpreting the output of other AI models at scale, flagging inconsistencies before they harm.

Latest publications

Victor Petrén Bach Hansen, Lasse Krogsbøll, Jonas Lyngsø, Mathias Baltzersen, Andreas Motzfeldt, Kevin Pelgrims, Lars Maaløe
There are now a multitude of AI-scribing solutions for healthcare promising the utilization of large language models for ambient documentation. However, these AI scribes still rely on one-shot, or few-shot prompts for generating notes after the consultation has ended, employing little to no reasoning. This risks long notes with an increase in hallucinations, misrepresentation of the intent of the clinician, and reliance on the proofreading of the clinician to catch errors. A dangerous combination for patient safety if vigilance is compromised by workload and fatigue. In this paper, we introduce a method for extracting salient clinical information in real-time alongside the healthcare consultation, denoted Facts, and use that information recursively to generate the final note. The FactsR method results in more accurate and concise notes by placing the clinician-in-the-loop of note generation, while opening up new use cases within real-time decision support.
Andreas G. Motzfeldt, Casper L. Christensen, Joakim Edin, Lars Maaløe, Maria Maistro, Tuukka Ruotsalo
Jakob D. Havtorn, Joakim Edin, Lars Maaløe, Lasse Borgholt, Maria Maistro, Tuukka Ruotsalo
Christina Kruuse, Hanne Christensen, Helle Collatz Christensen, Jakob D. Havtorn, Jonathan Wenstrup, Lars Maaløe, Lasse Borgholt, Michael R. Sayre, Stig N.F. Blomberg
Amélie Royer, Babak Ehteshami Bejnordi, Jakob D. Havtorn, Tijmen Blankevoort
Alexander Junge, Jakob D. Havtorn, Joakim Edin, Lars Maaløe, Lasse Borgholt, Maria Maistro, Tuukka Ruotsalo
Abdelrahman Mohamed, Christian Igel, Hung-yi Lee, Jakob D. Havtorn, Joakim Edin, Karen Livescu, Katrin Kirchhoff, Lars Maaløe, Lasse Borgholt, Shang-Wen Li, Shinji Watanabe, Tara N. Sainath
Federico Bergamin, Hugo Schmutz, Hugo Senetaire, Jakob D. Havtorn, Jes Frellsen, Lars Maaløe, Pierre-Alexandre Mattei, Søren Hauberg
Christian Igel, Jakob D. Havtorn, Joakim Edin, Lars Maaløe, Lasse Borgholt
Jakob D. Havtorn, Jes Frellsen, Lars Maaløe, Lasse Borgholt, Søren Hauberg
Christian Igel, Jakob D. Havtorn, Lars Maaløe, Lasse Borgholt, Tycho MS Tax
Lasse Borgholt, Jakob Drachmann Havtorn, Mostafa Abdou, Joakim Edin, Lars Maaløe, Anders Søgaard, Christian Igel
Lasse Borgholt, Jakob Drachmann Havtorn, Željko Agić, Anders Søgaard, Lars Maaløe, Christian Igel
Jakob D. Havtorn, Jes Frellsen, Søren Hauberg, Lars Maaløe
Jakob D. Havtorn, Jan Latko, Joakim Edin, Lasse Borgholt, Lars Maaløe, Lorenzo Belgrano, Nicolai F. Jacobsen, Regitze Sdun, Željko Agić
Lars Maaløe, Marco Fraccaro, Valentin Liévin, Ole Winther
Tycho Max Sylvester Tax, Jose Luis Diez Antich, Hendrik Purwins, Lars Maaløe
Lars Maaløe, Marco Fraccaro, Ole Winther
Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, Ole Winther
Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, Ole Winther
Søren Kaae Sønderby, Casper Kaae Sønderby, Lars Maaløe, Ole Winther

Join our research team

We are always looking for brilliant minds dedicated to innovating in healthcare, as well as impact research collaborations. Get in touch if you want to work together.